
Directives Beyond

Shared Memory

Dr. Michael K. Bane

HIGH END COMPUTE

http://highendcompute.co.uk

OMP Versions 1, 2, 3

• OpenMP formed as the standard for shared

memory programming

– Directives to set-up parallel regions (v1)

– Directives to share the work (v1)

– Directives for task-based (v3)

Tasks

• Quantum of independent work

– "independent" as in internal work can proceed

without any need for further input

• Then define the simulation as

– Set of tasks

– Dependency between tasks (eg DAG)

– More of a dataflow approach

• Presuming an excellent task manager, then

should get good throughput and speedup

Tasks: The OpenMP Way

• Create parallel region

• Have a single thread create

the tasks

• Then the tasks launch (one

per thread over all threads of

parallel region)

Create tasks

Tasks

DAG for

Cholesky

factorisation

© CUP

#pragma omp parallel

{

#pragma omp single

{

printf(“A “);

#pragma omp task

{printf("car ");}

#pragma omp task

{printf("race ");}

#pragma omp taskwait

printf(“is fun to watch “);

}

} // End of parallel region

2 tasks

Synchronisation (barrier) for tasks

$ cc -xopenmp -fast hello.c

$ export OMP_NUM_THREADS=2

$./a.out

A car race is fun to watch

$./a.out

A car race is fun to watch

$./a.out

A race car is fun to watch

What about Accelerators?

• OpenMP 4 introduced directives to offload

work to a co-processor (GPU, KNC at end of

PCI-e)

• OpenMP 4.5 refined & improved

• OpenACC

– Directives based

– Somewhere similar to OpenMP (liked by Intel)

– Moves more quickly, but less vendors

(loved by NVIDIA)

CPU 1 to maybe 64

cores, running at

2 to 3 GHz

High clock speed

but general

purpose

GPU 15 to 56

"streaming

multiprocessors"

(SMs), each with

64-128 "CUDA

Cores". Base freq

about 1 GHz

Very high

throughput of

vector arithmetic

(particularly

integer)

Xeon Phi 60-70 cores Low grunt but

general purpose

cores

FPGA

Research paper now out showing

OpenMP code being pushed to FPGA

(without user doing intermediate

steps)

ASIC (out of the reach of us mere mortals!)

ACCELERATOR

CPU

OpenMP Example

!$OMP PARALLEL DO

DO I=1, N

Y(I) = A*X(I)*X(I) + B*X(I) + C

END DO

!$OMP END PARALLEL DO

!$OMP PARALLEL TARGET DEVICE(0) DO

DO I=1, N

Y(I) = A*X(I)*X(I) + B*X(I) + C

END DO

!$OMP END PARALLEL DO

TARGET is referring to a

device (GPU or XPhi) for

pushing the iterations of the

DO loop. Impl dep how

defined hw to DEVICE(n)

For GPU, most likely also want

to use TEAMS DISTRIBUTE to

make effective use of their

Streaming Multiprocessors

OpenACC Example

!$OMP PARALLEL TARGET DO

DO I=1, N

Y(I) = A*X(I)*X(I) + B*X(I) + C

END DO

!$OMP END PARALLEL DO

!$ACC PARALLEL LOOP

DO I=1, N

Y(I) = A*X(I)*X(I) + B*X(I) + C

END DO

!$ACC END PARALLEL LOOP

!$ACC Parallel directive: put it on the

accelerator

!$ACC Loop directive: spread iterations

over threads

Improved efficiency by use of !$ACC

Data directive (determine which IO

(and can do async IO) to accelerator)

OpenMP 4

Want to know/try more…
• "Supplementary Materials directory

• HEC qwikLabs offer

– Choice of labs that use GPUs in AWS cloud

– Tokens for you

indicate on feedback form

